Exploration of temperature-aware refresh schemes for 3D stacked eDRAM caches
نویسندگان
چکیده
Recent studies have shown that embedded DRAM (eDRAM) is a promising approach for 3D stacked lastlevel caches (LLCs) rather than SRAM due to its advantages over SRAM; (i) eDRAM occupies less area than SRAM due to its smaller bit cell size; and (ii) eDRAM has much less leakage power and access energy than SRAM, since it has much smaller number of transistors than SRAM. However, different from SRAM cells, eDRAM cells should be refreshed periodically in order to retain the data. Since refresh operations consume noticeable amount of energy, it is important to adopt appropriate refresh interval, which is highly dependent on the temperature. However, the conventional refresh method assumes the worst-case temperature for all eDRAM stacked cache banks, resulting in unnecessarily frequent refresh operations. In this paper, we propose a novel temperature-aware refresh scheme for 3D stacked eDRAM caches. Our proposed scheme dynamically changes refresh interval depending on the temperature of eDRAM stacked last-level cache (LLC). Compared to the conventional refresh method, our proposed scheme reduces the number of refresh operations of the eDRAM stacked LLC by 28.5% (on 32 MB eDRAM LLC), on average, with small area overhead. Consequently, our proposed scheme reduces the overall eDRAM LLC energy consumption by 12.5% (on 32 MB eDRAM LLC), on average. © 2016 Elsevier B.V. All rights reserved.
منابع مشابه
Technology comparison for large last-level caches (L3Cs): Low-leakage SRAM, low write-energy STT-RAM, and refresh-optimized eDRAM
Abstract Large last-level caches (LCs) are frequently used to bridge the performance and power gap between processor and memory. Although traditional processors implement caches as SRAMs, technologies such as STT-RAM (MRAM), and eDRAM have been used and/or considered for the implementation of LCs. Each of these technologies has inherent weaknesses: SRAM is relatively low density and has high le...
متن کاملA Cache Reconfiguration Approach for Saving Leakage and Refresh Energy in Embedded DRAM Caches
In recent years, the size and leakage energy consumption of large last level caches (LLCs) has increased. To address this, embedded DRAM (eDRAM) caches have been considered which have lower leakage energy consumption; however eDRAM caches consume a significant amount of energy in the form of refresh energy. In this paper, we present a technique for saving both leakage and refresh energy in eDRA...
متن کاملRefresh Reduction in Dynamic Memories by Aditya Agrawal Dissertation
An effective approach to reduce the static energy consumption of large on-chip memories is to use a low-leakage technology such as embedded DRAM (eDRAM). Unfortunately, eDRAM, being a dynamic memory, requires periodic refresh, which ends up consuming substantial energy for large last-level caches. In upcoming architectures that stack a processor die and multiple DRAM dies, DRAM dies experience ...
متن کاملExploration of Temperature-Aware Placement Approaches in 2D and 3D Stacked Systems
Technology scaling has brought about dramatic rises in the on-chip power density of modern microprocessors. This has led to greater scrutiny and awareness of thermal management techniques which allows to uphold the thermal integrity of the chip. Higher temperatures or uneven distribution of temperatures result in timing uncertainties which induces performance and reliability concerns for the sy...
متن کاملDynamic voltage frequency scaling-aware refresh management for 3D DRAM over processor architecture
ELECT Three-dimensional integrated systems that combine large-capacity dynamic random access memory (DRAM) with high-performance processors represent a promising solution to implementing high-performance computing. However, in such configurations stacked DRAM cells will inevitably be exposed to high temperatures generated by the processor, thereby necessitating DRAMs with high refresh rates dri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microprocessors and Microsystems - Embedded Hardware Design
دوره 42 شماره
صفحات -
تاریخ انتشار 2016